Professor Markov’s Transformers
- Abstract
- Description:
- Background Art
- Disclosure of the Invention
- Brief Description of the Drawings
- Best Variants of Carrying Out the Invention
- 1. Open circuit (no-load conditions)
- 2. Operating mode (with a load connected)
- Example 1.
- Example 2.
- Example 3.
- Example 4.
- Industrial Applicability
- A Lenz-Law-Free Transformer
- 1. The Effect of capacitors in resonant LC-circuits
- 2. Two Kinds of inductances
- 3. Testing of closed-loop cores
- 4. Using two coils in a resonant LC-circuit
- 5. My results
- 6. Things to try after a successful replication
Professor Gennady Markov, General Director of STC "Virus" and author of many inventions and discoveries, received an international patent for a new a transformer design which he created. His work involves a new law in the field of physics and electrical engineering. He says: In 1831 Faraday discovered electromagnetic induction. Then his ideas were further developed by Maxwell. For more than 160 years following that, no one advanced fundamental electrodynamics by even a single step. Eight years ago, I applied for an international patent, valid in 20 countries, as I had created a transformer, which has already received four Russian patents. My discovery was made despite the "laws" of the great physicist Faraday who said that “magnetic fluxes in a magnetic circuit should be combined separately with the resulting combined flux moving in only one direction. Only then can you have a working transformer”.
I dared to do the opposite: take a coil with two identical windings and operate them towards each other. This creates equal magnetic fluxes, moving toward each other, which cancel each other out, but do not destroy each other as Faraday and Maxwell claimed. I determined a new law: ‘The Principle of Superimposition of Magnetic Fields in Ferromagnetic Materials’. The superimposition - is the addition of magnetic fields. The essence of the law is that the magnetic fields are added, cancel each other, but they are not destroyed. And here the important part is "they are not destroyed" and that is the key fact on which my law is based.I wrote an article on this subject, which was published in the journal "Applied Physics". I demonstrated a transformer at an international exhibition in China, where it caused great interest among scientists and other experts. That transformer had excellent performance and in fact, it can raise or lower the voltage without any need for a secondary winding. My new law allows us, firstly, to create high-power transformers where the weight and size per unit of capacity is 20 to 30 times lower than in conventional Faraday transformers. Second, I created a transformer which, despite its large dimensions and power-handling capabilities, can operate at frequencies up to several megahertz (at the present time, a conventional transformer operates at frequencies of only 30 to 50 Hertz, and if you operate them at 100 Hz or higher, the metal overheats and the transformer breaks down). My transformer can operate safely at frequencies of millions of Hertz.
Conventional transformers tend to be very bulky because they contain a great deal of iron with the weight of a standard 4 MW transformer being 3670 Kg. My 4 MW transformer weighs a total of 370 kg. When constructing a new transformer you can use any quality of steel quality and there are virtually no restrictions on the frequency range in which it can operate. Unlike conventional transformers, a new transformer can be transported from the place of manufacture to the point of use quite easily. This new transformer design gives us a huge opportunity to create a new generation of technology.
Please note that the transformer does not operate at low frequencies. Its frequency range is 10 kHz to 40 MHz, and the voltage needs to be at least 40 volts.
Here is most of Professor Markov’s patent EP 844,626:
TRANSFORMER
Abstract
Several types of transformers are proposed which may be used as the main electrical engineering equipment of electric power stations, substations, power lines, in radio engineering, in devices for measuring, automatic control and regulation. At the heart of the invention lies the principle where the primary winding consists of two sections wound and connected to each other in such a way that during operation of the transformer, the magnetic flux created by one section of the primary winding compensates the magnetic flux created by the other section of the primary winding.The transformer comprises (Fig.2) a magnetic circuit, a primary winding consisting of two sections having an identical number of turns, wound in one direction on a core of the magnetic circuit. The windings of the two sections are connected to each other by their outputs, while the inputs of the windings serve as entrances for the power supply. The secondary winding is wound on the primary winding on the same core of the magnetic circuit, a load RH is connected to the secondary winding.
The developed embodiments of the transformer are distinctive in that the sections of the primary winding are wound on one core of the magnetic circuit (3 embodiments) or on two cores of one magnetic circuit (4 embodiments), in that the direction in which the sections of the winding are wound is different (in one or opposing directions), and consequently there is a different connection of the windings, and are also distinguished by the presence of a secondary winding (in one embodiment there is no secondary winding).
Description:
Background Art
Transformers are electromagnetic static converters of electrical energy which have two or more inductively coupled windings and are designed for the conversion of a sinusoidal alternating current of one voltage into an alternating current of another voltage with the same frequency.The principle of operation of a transformer is based on the effect of electromagnetic induction found by M. Faraday in 1831 (B.N. Sergeenko, V.M. Kiselev, N.A. Akimova. Electrical Machines. Transformers. Pub. "Vysshaya Shkola," Moscow, 1989). In accordance with specific features of construction and use, transformers can be divided into power, welding, measuring and special transformers.
Power transformers, which are a necessary element of an industrial power network, have attained the most widespread use. Transformers have two basic parts: a magnetic circuit and windings. Furthermore, high-power transformers have a cooling system. The magnetic circuit is the structural base for mounting and fixing windings, taps and other elements of a transformer, and serve for amplification of the magnetic coupling between the windings.
The part of the magnetic circuit upon which the windings are arranged, is called the ‘core’, the remaining part, closing the magnetic circuit, is called the ‘yoke’. The windings of a transformer serve to create a magnetic field by means of which electrical power is delivered. The winding of the transformer to which electrical power is applied is called the primary winding, while the winding from which power is taken is called the secondary winding.
Known inventions are concerned with the creation of special transformers or with changes of particular structural elements of the transformer; realisation of magnetic circuits from certain materials and their structural appearance, connection of magnetic circuits to each other where there is a number of magnetic circuits n, use of different types of insulation and cooling systems, realisation of the windings, additional elements in order to enhance noise immunity.
A transformer for vehicles is known [PCT (WO), 93/14508]. The small-size, light transformer, comprises a shell-type iron core on which inductively coupled input and output windings are wound. A magnetic element with an air gap is provided between the input and output windings, while a magnetic element creating strong magnetic coupling is located between the output windings. The element is disposed in a gap 5d surrounded by the core and consists of a magnetic circuit without gaps and an insulating plate holding the magnetic circuit and insulating it from the core and windings.
A transformer is known [PCT (WO), 93/16479], in which the core is made from ferromagnetic wire. A spirally wound core from ferromagnetic wire is proposed. The core is used in a differential current sensor in a switch to open a circuit, which operates when there is a short circuit to ground. The ferromagnetic wire is wound in a spiral, the turns of which are parallel to each other and extend over the whole length of the core. The latter is positioned near current lines, with monitoring of a short circuit therein, wherein both lines are connected to a power source. The currents in them flow in opposite directions. The core interacts with a magnetic field created by those currents. Where a ferromagnetic wire is used, it is possible to increase substantially, the surface area of the core without increasing its cross section, and consequently, its size.
A transformer is known [RU, C1, 2041514] consisting of one or several strip cores made from a magnetic alloy comprising silicon, boron, iron and several windings inductively coupled to the core, wherein the magnetic alloy additionally comprises copper and one or several components selected from the group consisting of niobium, tantalum, tungsten, molybdenum, chromium, and vanadium, with the following ratio of alloy components, atom percent: copper - 0.5-2.0; one or several components from the group consisting of niobium, tantalum, tungsten, molybdenum, chromium, vanadium - 2-5; silicon - 5-18; boron - 4-12; iron - balance.
A transformer is known [PCT (WO), 93/18529] comprising 3 or 4 types of insulation units with one winding. Transformers of this type are easily assembled with small expenditure of time.
A current transformer with strip insulation is known [RU, C1, 2046425] comprising a single-turn or multi-turn primary winding and secondary windings which are placed in a damping screen and have terminals. Wherein the windings are secured by means of insertion support and connecting bushings and are covered with epoxy compounds. The transformer is additionally provided with insulation bushings, a screen which is placed on the primary winding, and support clamps. Insulation bushings are mounted in semi-oval slots of the clamps, the damping screen is made open and consists of two parts, with an insulating pad mounted in the gap between the two parts, and the insertion support bushings are mounted on the insulating bushings in a manner adaptable for securing the damping screen.
A high-voltage transformer is known (RU, C1, 2035776] comprising a porcelain housing mounted on a socket on which an active portion enclosed in the housing, is positioned on compressing posts. The active portion consists of a mixed rectangular magnetic circuit with yokes, upper and lower horizontal cores on which windings are positioned. In order to reduce the noise immunity the transformer is provided with additional screens - a middle one, upper and lower ones, and a capacitive screen.
A winding for a high-voltage transformer is known [PCT (WO), 93/18528]. A connecting element is secured to the conductive portion of the winding to enhance its mechanical properties, and a second connecting element is connected to the aforesaid connecting element by means of insulating elements. Such, a winding can be used as a low-voltage winding with a small number of turns in dry transformers with a resin poured over them.
A heavy-current transformer is known [RU, C1, 2027238] comprising a primary winding disposed on a toroidal core and a secondary winding encompassing the primary winding. Wherein the secondary winding is made by a bundle of flexible conductors placed in the inner cavity of the torus in N sections, and from the outer side of the torus in N-1 sections, where N is the number of turns of the secondary winding, wherein the bundle is arranged in one or more layers on the outer side of the torus.
However, all the known transformers are built according to one principle, in, particular - supplying electrical power to the primary winding and taking electrical power from the secondary winding, and they all have these drawbacks: multi-turn secondary windings in step-up transformers, which nevertheless operate in a rather narrow frequency range (50-400 Hz); the limited frequency range of the transformers being related to losses in the magnetic circuit at higher frequencies; high resistance of the windings, i.e. the necessity that the no-load condition of the transformer be taken into account during calculations of the number of turns in the secondary winding to obtain a predetermined output voltage; the complexity of the construction of the transformers when all possible kinds of additional elements, insulation etc. are used to reduce the above drawbacks.
Disclosure of the Invention
At the base of the invention lies the object of creating such a transformer in which the possibility of winding the secondary winding with wire, including wire with a cross-section equal to the cross-section of the primary winding, is realised, and the reduction of the number of turns in the secondary winding of high-voltage transformers and expansion of the number of variants of existing transformers are attained.This object is achieved in that a construction of a transformer is proposed which comprises a magnetic circuit, at least two windings, inlets for a power supply, outlets for a load, wherein the primary winding consists of two sections with an identical number of turns, the sections being connected to each other in a series circuit.
A transformer is proposed in which two sections of a primary winding are wound in one direction on one core of the magnetic circuit, the sections are connected in a series circuit by connection of the outputs of the windings, and the point of their connection serves as an outlet for the load, while the inputs of the windings of the sections serve as inlets for the power supply.
The above technical result is achieved by creating a transformer, two sections of the primary winding of which are wound in one direction on one core of the magnetic circuit, the outputs of the windings of the sections are connected in a series circuit, while the inputs of the section windings serve as inlets for the power supply. The secondary winding is wound on the same core of the magnetic circuit, over the sections of the primary winding.
The aforesaid technical result is achieved by creating a transformer, two sections of the primary winding of which are wound in opposing directions on one core of the magnetic circuit, the output of the winding of the first section and the input of the winding of the second section are connected to each other in a series circuit, while the input of the winding of the first section and the output of the winding of the second section serve as inlets for the power supply. The secondary winding is wound on the same core of the magnetic circuit over the sections of the primary winding.
The indicated object is achieved by creating a transformer in which both sections of the primary winding are wound in one direction on two cores of one magnetic circuit, the output of the winding of the first section and the input of the winding of the second section are connected to each other in a series circuit, while the input of the winding of the first section and the output of the winding of the second section serve as inlets for the power supply. The secondary winding is wound on both sections of the primary winding, encompassing both cores of the magnetic circuit. The same technical result is achieved by creating a transformer in which both sections of the primary winding are wound in opposing directions on two cores of one magnetic circuit, the outputs of the windings of the sections are connected to each other in a series circuit, while the inputs of the windings of the sections serve as inlets for the power supply. The secondary winding is wound on both sections of the primary winding, encompassing both cores of the magnetic circuit.
The same technical result is achieved when both sections of the primary winding are wound in one direction on two cores of one magnetic circuit, where the input of the winding of the first section is connected to the output of the winding of the second section, the output of the winding of the first section is connected to the input of the winding of the second section, the points of their connection serve as inlets for the power supply. The secondary winding is wound on both sections of the primary winding, encompassing both cores of the magnetic circuit.
The indicated object is achieved by creating a transformer in which two sections of the primary winding are wound in opposing directions on two cores of one magnetic circuit, both sections are connected to each other by connection of the inputs and outputs thereof respectively, and the points of their connection serve as inlets for the power supply. The secondary winding is wound on both sections of the primary winding, encompassing both cores of the magnetic circuit.
The following lies at the base of the invention: sections of the primary winding are wound and connected to each other in such a manner that the magnetic flux created by one of such sections during operation of the transformer compensates the magnetic flux created by the other section of the primary winding.
If the two sections of the primary winding of the proposed transformer are connected to an alternating current network having a voltage U1, then a current io will flow along them. The magnetomotive force of one section of the winding iow1 due to the current io creates an alternating magnetic flux F1 in the magnetic circuit of the transformer. Similarly, a magnetomotive force iow2, which is equal to the mmf of the first section iow1, appears in the second section of the winding. Since the sections are connected to each other in a series circuit, the alternating magnetic flux F2 appearing in the second section of the primary winding and directed counter to the magnetic flux F1 will compensate the magnetic flux of the first section F1. However, due to the induction of the mmf the permeability of the magnetic circuit changes.
When the network current drops during half-cycles, restoration of he permeability occurs in the magnetic circuit, and consequently, an electromotive force (emf) is induced in the primary and secondary windings. Wherein, during a half-cycle of current in the primary winding, the voltage in the secondary winding passes through a whole period.
In the case where both windings are wound in opposing directions with an identical number of turns, but are connected to each other in a series circuit by opposing leads (the output of the winding of the first section and the input of the winding of the second section), the magnetic flux in the primary winding io will also be equal to zero, i.e. the same technical result can be attained as in the case where the windings of both sections are wound in one direction. When RH is connected to the secondary winding, the form of the voltage does not change. The output voltage depends on an increase of the number of turns in the secondary winding as compared with the number of turns in the primary winding.
Such a realisation of the proposed transformer results in:
1) a reduction in the number of turns in the secondary winding by 10 to 20 times, and consequently, the dimensions of the transformer are reduced;
2) the possibility of winding the secondary winding with a thick wire having a cross section equal to the cross section of the wire in the primary winding;
3) the secondary winding having a number of turns either greater or less than the number of turns in the primary winding, depending on the necessity of a high voltage at the output of the transformer.
Brief Description of the Drawings
Further the invention will be explained by a description of concrete examples of its embodiment and the accompanying drawings in which:Fig.1 shows the device being patented - a transformer in accordance with the invention (circuit);
Fig.2 shows another embodiment of the transformer in accordance with the invention (circuit);
Fig.3 shows one of the embodiments of the transformer in accordance with the invention (circuit);
Fig.4 shows one more embodiment of the transformer in accordance with the invention (circuit);
Fig.5 shows one more embodiment of the transformer in accordance with the invention (circuit);
Fig.6 shows one of the embodiments of the transformer in accordance with the invention (circuit);
Fig.7 shows one of the embodiments of the transformer in accordance with the invention (circuit);
Fig.8 shows a stylized dependence of the increase of current and voltage in the primary and secondary windings of a transformer with a ferrite magnetic circuit; Fig.9 shows a stylised dependence of the increase of current and voltage in primary and secondary windings of sheet steel
💠 Harnessing the power of back electromagnetic fields (Back EMF)
💠 Back EMF generates Lenz's Force in generator 💠 When the output energy is not affected by the Lenz (free) force, a self-powered mechanism will be established from the AC generator head to the induction motor. And the kinetic energy of the induction motor at that time was only supposed to stir the Ether by Nikola Tesla's "Rotating Magnetic Field". That's the mechanism for a Free Energy AC generator - no fuel needed - Self-powered generator.
AC generator without fuel: Free Energy Will Change Our World Forever
👉 Free Energy AC generator
Best Variants of Carrying Out the Invention
A transformer in accordance with the invention, according to the embodiment shown in Fig.1 comprises a magnetic circuit 1, a first section 2 of a primary winding, a second section 3 of the primary winding, a1 and x1 - the input and output of the winding of the first section, a2 and x2 - the in and out of the winding of the second section of the primary winding, RH1 - the resistance of a load connected to the first section, RH2 - the resistance of a load connected to the second section of the primary winding. The two sections of the primary winding are wound on the magnetic circuit 1: the first section 2, the second section 3 thereon in one direction, and they have an identical number of turns. The outputs x1 and x2 of the windings are connected to each other in a series circuit, while the inputs a1 and a2 of the windings are separately connected to a power supply. A load resistance is connected parallel to each section of the winding: RH1 in the path of the current from the power supply to the first section of the winding and to the point of connection of the windings of the sections, and RH2 correspondingly to the second section of the primary winding
A transformer in accordance with the invention according to the embodiment shown in Fig.2 is made similar to the transformer according to the embodiment shown in Fig.1. A distinction is in the presence of secondary winding 4, which is wound in a third layer on the sections 2 and 3 of the primary winding on the same core of the magnetic circuit 1. A and X designate the inlet and outlet (in and out of the phase) of the secondary winding, RH - the resistance of the load connected to the leads A and X of the secondary winding.
A transformer in accordance with the invention according to the embodiment according to Fig.3 is made similar to the transformer according to the embodiment shown in Fig.2. A distinction is that the sections of the primary winding are wound in opposing directions. The output of the winding of the first section x1 and the input of the winding of the second section a2 are connected to each other in a series circuit, the other leads of the sections a1 and x2 serve as inlets for the power supply.
A transformer in accordance with the invention according to the embodiment shown in Fig.4 is made similar to the transformer according to the embodiment shown in Fig.2. A distinction is that the sections of the primary winding 2 and 3 are wound on two cores of the magnetic circuit 1. The sections are connected to each other via opposite leads - the out of the winding of the first section and the in of the winding of the second section. Secondary winding 4 is wound on both sections of the primary winding and encompasses both cores of the magnetic circuit.
A transformer in accordance with the invention according to the embodiment shown in Fig.5 is made similar to the transformer according to the embodiment shown in Fig.4. A distinction is that the two sections of the primary winding are wound in opposing directions, the outputs x1 and x2 of the windings of the sections are connected to each other in a series circuit, while the inputs a1 and a2 of the windings of the sections serve as inlets for the power supply.
A transformer according to the embodiment shown in Fig.6, is made similar to the transformer according to the embodiment shown in Fig.4. A distinction is that the in of the first section a1 and the out of the second section x2, and also the output of the first section x1 and the input of the second section a2 are connected to each other, and the points of their connection serve as inlets for the power supply.
A transformer according to the embodiment shown in Fig.7, in accordance with the invention, is made similar to the transformer according to the embodiment shown in Fig.6. A distinction is that the sections are wound in opposing directions, by the inputs a1 and a2 and by the outputs x1 and x2 the windings of the sections are connected to each other, and the points of their connection serve as inlets for the power supply.
The principle of operation of the proposed transformer according to the embodiment shown in Fig.1 is as follows:
1. Open circuit (no-load conditions)
The inputs a1 and a2 of the windings of sections 2 and 3 are separately connected to a power supply U (not shown), the outputs x1 and x2 of the windings of those same sections are connected to each other in a series circuit. A current i flows through the windings of those sections, this current causes a magnetomotive force mmf in each section of the winding which is equal to iw. Since the fluxes in each section are equal and directed in opposing directions they are mutually compensated and reversal of magnetisation of the core does not occur, but as a consequence of maintenance of the principle of superimposition of magnetic fields in a magnetic circuit, the latter interacts with the fields on a microscopic level which results in stressed interaction of a domain structure and a change in the magnetic permeability of the material of the magnetic circuit.Thus, a change of the current passing through the sections of the primary winding in time results in a change of the permeability, while a change of the latter causes an emf to appear in those windings between the point of connection of the sections and the inputs of the windings, but shifted by phase in time relative to the current passing from the supply source. Due to this, the voltage at the output of the transformer is increased by 10 to 20 times with actually just one primary winding.
2. Operating mode (with a load connected)
The load resistance RH1 is connected in the path of the current i from the power supply U to the first section 2 of the winding and to the point of connection of the outputs of the sections, the load resistance RH2 is connected accordingly to the second section 3 of the winding. The current i from the power supply is passed through the formed closed loop, wherein the primary current i is increased in each loop proportionally to the load RH, which results in a change of the emf in the loop - an increase of the emf.At a low load resistance (equal to the resistance of the winding) the voltage U will be equal to the voltage drop on the winding, when the load resistance tends to increase to infinity, the secondary voltage U will increase proportionally, as a result of which the emf at the output of the transformer will increase dozens of times when there is one primary winding.
The principle of operation of the transformer according to the embodiments shown in Fig.2 to Fig.7 is similar to the principle of operation of the transformer according to the embodiment shown in Fig.1. A distinction lies in the presence of a secondary winding 4. Since the primary winding for the mmf in those embodiments remains open, a no-load emf is always induced therein, i.e. a self-inductance current is not created in the winding and all the mmf energy is provided as an emf of the secondary winding. Under such conditions, the intensity of the electric field per unit of length of the conductor of the winding in the secondary winding can exceed by ten times, the intensity of the electric field in the primary winding, which is set by the power supply. As a result the secondary winding can have fewer turns as compared to the primary winding, while the voltage is dozens of times greater than the mains voltage. Wherein the form of the voltage and current in the secondary winding repeats the form of the voltage and current in the primary winding.
Fig.8 shows a stylised dependence of the increase of current and voltage in the primary and secondary windings of a transformer with a ferrite magnetic circuit. It should be noted that the permeability mu of the magnetic circuit changes with time in the following manner with a sinusoidal form of current: it increases from 0 to pi /4, then from pi /4 to pi /2 it drops, and from pi /2 to pi 3/4 the speed of restoration of the permeability again increases and from pi 3/4 to pi the restoration of mu is slower. As a result of such a change of the magnetic permeability, an emf is induced in the secondary winding at a doubled frequency and there is a complete period of the secondary current for one half-period of the current in the primary winding.
Fig.9 shows a stylised dependence of an increase of current and voltage in the primary and secondary windings of a transformer with a magnetic circuit of sheet steel. With this type of magnetic circuit there is a shift of the form of the primary and secondary current curve from pi /6 to pi /4 while the form of the current is maintained.
The transformation ratio for each type of transformer was determined experimentally. Concrete examples of the operation of different types of transformers are given below in order to better understand the invention. The same results were obtained with embodiments of transformers for which examples are not provided.
Example 1.
M600HH-8 K100-60-15 ferrite rings were used as the magnetic circuit. Two sections of the primary winding, one over the other, were wound on a core of the magnetic circuit assembled from four rings. The outputs of the windings of both sections were connected in a series circuit, a load resistance RH was connected parallel to each section - one end to the point of connection of the sections, the other - to the inputs of the sections, the inputs of the windings of each section were connected to the power supply. The number of turns in the sections was identical and equal to 60. The transformation ratio for this transformer was 11. The results of measurement of the voltage at the output of the transformer are presented in Table 1, Example 1. Similar results were obtained when the transformer was made with a ferrite U-shaped magnetic circuit.Example 2.
A ring-type magnetic circuit made from sheet steel and designed for a power of 2.5 kW was used as the magnetic circuit. Two sections of the primary winding were wound on the core of the magnetic circuit, wherein both sections were wound in one direction with their outputs connected in a series circuit, the inputs of the sections connected to the power supply. A secondary winding was wound on the primary winding (the direction in which it is wound does not affect the operation of the transformer). The transformation ratio was determined experimentally and was equal to 5. The number of turns of one section of the primary winding was 110, the number of turns of the secondary winding was also equal to 110, the diameter of the wires in the primary and secondary windings was identical and equal to 1.2 mm. A load was connected to the leads of the secondary winding. The voltage was measured at the input of the primary winding and at the output of the secondary winding, i.e. on the load. The results of measurements are presented in Table 1, Example 2.Example 3.
U-shaped ferrites were used as the magnetic circuit. The magnetic circuit was assembled from four units. Two sections of the primary winding were wound on the two cores of the magnetic circuit, each section on one core. The sections were wound in opposing directions, but with an identical number of turns. The total number of turns in the primary winding was 120. The outs of the windings of the sections were connected in a series circuit, the inputs were connected to a power supply. A secondary winding, encompassing both cores, was wound on the primary winding. The number of turns in the secondary winding was 120. The transformation ratio was determined and found equal to 10. The results are presented in Table 1, Example 3.Example 4.
A U-shaped magnetic circuit made from sheet steel was used as the magnetic circuit. Two sections of the primary winding were wound on both cores of the magnetic circuit, each section on one core. The sections were wound in one direction, the number of turns in each section was 120. The output of the winding of the first section and the input of the winding of the second section, and also the input of the winding of the first section and the output of the winding of the second section were connected to each other, and the points of their connection were connected to the power supply. The secondary winding was wound on the primary winding, the number of turns in the secondary winding was 120. The transformation ratio of this transformer was 8.5. The results of measurement are presented in Table 1, Example 4.Industrial Applicability
Samples of all types of transformers were made and have been working for from three to five years. All these examples were tested and can serve as electrical engineering equipment in laboratory practice and in industrial enterprises.A Lenz-Law-Free Transformer
This is an extract from a document dated January 2014 by an anonymous author whose ID is “Jack Noskills”. He says: This short paper describes a simple method how to build a Lenz-Law-free resonant transformer. Lenz law is not violated but it is used to create more efficient transformer. Without Lenz law this setup could not work.First some simple tests are presented which forms foundation of the device. Then based on the results of these tests I built the transformer which confirmed my test results. It is important to understand the method as that will give you understanding. When you understand it, you can build it using different components than I used.
1. The Effect of capacitors in resonant LC-circuits
The capacitor’s value in a Parallel Resonant LC-circuit controls the attenuation level of band-stop filter. A low value of C makes the resonant area smaller and attenuation steeper. A high value of C makes the resonant area wider and the attenuation level lower. When investigating resonant effects, it is wise to start with a high value of C. I used 440 nF to 2000 nF.In any Series Resonant LC-circuit the frequency response has a notch at the resonant frequency. The frequency response is the opposite of that in a Parallel LC-circuit.
To get maximum effect it is therefore best to have high attenuation level at a primary Parallel LC-circuit (low C) and a high amplification level at a secondary LC-circuit (also low C).
The “Q-factor” is the inductive reactance of a coil divided by its DC resistance. The Q-factor determines the resonant rise in a resonant circuit and so the higher the Q factor is, the higher the power output will be. In a coil, the DC resistance can be minimised using thicker wire and fewer turns. Inductive reactance can be maximised using a higher resonant frequency which is controlled by the L and C components of the circuit. Smaller L and C values produce an increased resonant frequency.
There is plenty of information about the Q-factor on the web. I just wanted to put a short introduction to Q-Factor here so that you will understand that a high Q resonant LC-circuit can be dangerous.
2. Two Kinds of inductances
Any simple helical coil wound on a core affects only another helical coil which has been wound underneath it or on top of it. If two coils are placed beside each other there is little interaction between them. Let’s call this the ‘local inductance field’.A coil wound on a closed-loop core affects any coil on that same core and the coil also has a much higher inductance than an air-core coil. Does this mean that the local field disappears? No, it doesn't. This effect can be used to make a simple over unity device.
3. Testing of closed-loop cores
I used E-shaped parts from low power, laminated iron transformers and put those E parts together. I used a primary coil of very high inductance and fed AC through it. The E plates snapped together and stayed that way even after power was disconnected. I tried several times, sometimes the force was strong and sometimes they did not stick together at all. The strength clearly depended on the input AC waveform. When I separated the E plates they no longer stayed together, so something was interrupted in the core. While the cores were fixed together they did not have any external magnetic effects and another piece of iron would not stick to the core. This demonstrated Ed Leedskalnin’s perpetual motion holder effect.Conclusion: There is something moving inside the core and the core has zero resistance to that flow. Let’s call the flow “magnetic current”.
I then put three identical coils on the core, one had a load connected to it and the others were left unconnected. I applied AC to the primary. There was same voltage at both output coils. Short-circuiting one output coil caused power to began to flow in the primary and at the same time voltage dropped to half in the unconnected output coil. The following, seemingly unimportant and obvious conclusion can be made:
Conclusion: A secondary coil also creates magnetic current and different secondary coils affect each other in opposite ways.
Next, I connected various points in the core with iron. Points that I used for testing are shown here:
When iron was connected between points 1 and 2 there was no effect. When connected between points 2 and 3 there was a notable effect: a sound and sort of vibration when iron approached the core which seized when both ends touched the core. When connected between points 4 and 5 there was the same effect but stronger. In this case power output of the core dropped while power input remained the same.
Conclusion: Magnetic current inside the core wants to loop back to itself through every possible route it can.
For the next test I used a nanoperm core, and I wound coils of about 50 turns for both the primary and the secondary. The primary was fed with AC from the output of an audio amplifier and the secondary was connected to a loudspeaker. I then played some music from my PC through the audio amplifier. I heard the music and higher frequencies were attenuated while lower frequencies sounded fine. What I had got was a low-pass analogue audio filter.
Conclusion: There can be all frequencies active in the output coil at the same time. Hence there can also be magnetic current active at the same time at all frequencies in the core.
Based on these simple tests I then reached the following overall conclusion:
In a closed-loop core there can be a flowing magnetic current which varies with time when the core is energised using AC electric current. The magnetic current has summing/subtracting properties and it also has a perpetual motion property. It can be modelled as a sine wave and sine waves can be manipulated to our advantage.
Related: Free Energy With Magnets by Stephan Leben and Charles Flynn
4. Using two coils in a resonant LC-circuit
Below are pictures of C-I shaped and E-I shaped cores which show how coils should be wound. All coils are wound in the same direction and connected from the ends. When coils are used like this their closed loop magnetic currents cancel each other and only a local inductance field remains. This is why there is a resonant frequency but much higher than otherwise possible. For example, I used two 160 turn coils and resonant frequency was between 12-13 kHz. One coil of 20 turns in my nanoperm core blocks everything above 1.5 kHz. And I can push 260 watts from my audio amplifier.Now you may think that this is of no use. If there is a power collection coil then it will not collect anything as magnetic currents inside the core are cancelled. But if these two coils are used as outputs and they are driven by a primary coil which is wound over both of them then the result is that power is generated. Both outputs will then be in exactly the same phase and when connected correctly they amplify each other while the primary circuit does not see a thing as the opposing phase magnetic currents cancel each other out - see Figure 3.
The primary coil is in fact a solenoid, it has no magnetic loops and it has low inductance. Secondary coils form closed loops and they have higher inductance. The more secondary coils which are used, the more magnetic current (in correct phase) will be circulating inside the core. Don Smith called this ‘resonant magnetic flux’.
Thick multi strand wire (not Litz type!) should work best, few turns and a capacitor. But any thickness of wire will do.
Warning: Begin using small diameter wires, something below 0.5mm. I haven't tested thick wires but resonant rise will occur. Also, you had better start with low-Q resonant circuits as you don't want kilovolts generated near you.
Tuning is now easy. First you make a parallel LC-circuit using secondary coils, see Figure 2. For the core you can use a toroid shape, C-I or E-I core pieces. The E-I shape pieces should be the most efficient. Next find the resonant frequency of the L-C circuit which you have just created. Now disconnect the secondary coils and do the same for your primary coil. Adjust the number of turns in the primary coil or amount of capacitance until you get a close enough resonant frequency in the primary matching with the secondary coil’s resonant frequency which you have just found.
Now connect the load and feed the primary coil with a pure AC sine wave. Pulses do not work because a square wave pulse contains all frequencies which in turn creates magnetic currents at all frequencies resulting in a total mess of magnetic flow inside the core. The input definitely has to be a pure sine wave.
There has got to be amps running in the primary LC-circuit so that the primary capacitor is filled. If you get resonance but see no power then try using a higher frequency.
If you use E-I or C-I type cores, make sure that there are no air gaps between the pieces forming the core. There has to be a closed magnetic circuit in the core. Using an LED as a load obviously does not work because it prevents resonant rise in the output LC-circuit. I suspect that E-I works best when core dimensions are such that the core area in the middle leg is twice that of the outer legs. Magnetic currents created by the secondary coils should be equal so that their sum is always zero.
Permeability of the core does not matter and you can use iron or ferrite. You need to use a frequency that is within the limits of what the core material can handle. The Nanoperm material which I used can handle frequencies up to 1 MHz.
5. My results
My input source was an audio amplifier, I expect that it outputs power at 5 volts but I really don’t know. I cannot measure it as I have no meters. I used the GoldWave audio editor to create a sine wave input. It has a nice expression evaluator that allows you to do frequency sweeps easily. GoldWave is a free software download available from www.goldwave.com.I used a M-088 Nanoperm core from Magnetec (µ was 80,000) with 0.3 mm wire. First I had about 160 turns in each secondary and 20 meters wrapped in the primary, about 120 turns or so (far too much but that was my initial guess). I had to use high number of turns because my input was limited below 20 kHz. I was lucky to find suitable L and C combinations so I could see a glimpse of the resonant action.
Since I don’t have any meters I used halogen bulbs. I put a 5-watt 12 volt bulb in the primary and 10-watt and 8-watt 12 volt bulbs in the output. I did a sweep and as the frequency went through the sweet spot output power increased. At resonant frequency somewhere between 12 - 13 kHz there was no light at all in the primary halogen but both of the output bulbs were lit to about half brightness.
Now that I got it, I reduced the number of turns in the secondary coils to half and changed the capacitance from 440nF to 1000nF. The resonant frequency at the output changed a bit but since the resonant area was wide it did not make a notable difference. Now I got more light, almost full brightness and halogens were way too hot to touch. Again no light visible in the primary side bulb.
So what did I just do? DC resistance dropped to half in the output coils so their Q factor was doubled giving double the resonant rise in the output LC-circuit. Cool!
I observed the same action in the primary LC-circuit. There I used 40 meters of wire in the primary and I got much less power output. In that case the Q-factor dropped to half which explains the results nicely.
6. Things to try after a successful replication
Bi-filar windings should lower the total value of L and so a higher resonant frequency can be used. At the output there could be bi-filar windings without capacitors because high voltage capacitors are expensive and dangerous when loaded. Then place a correct capacitor in primary LC-circuit to tune in.Revealed At Last...
Free Energy Magnetic Generator and synthesizes many other technologies imbued with Nikola Tesla's technological identity
✔ Nikola Tesla’s method of magnifying electric power by neutralizing the magnetic counter-forces in an electric generator
Generates Energy-On-Demand: 👉 Free Energy Will Change Our World Forever
✔ Combination of induction motor and alternator
✔ Combine generators with induction motors - self-powered generators with rotary motion
✔ Various methods of generating high power immobile generators
✔ Or maybe called Overunity for the system. Mother Nature doesn't care about people calling or naming phenomena. Overunity/Free Energy, Zero Point Energy (ZPE) are just a few different words