Transformer Resists Back EMF (Ether field) by the (circular) wire loop

Important notes before learning about Barbosa and Leal's work:

It is said to be a transformer that traps Electrons. But that's because Barbosa and Leal filed a patent that mentioned the Electron in mainstream science. Otherwise, the patent will not be approved.

In truth, the Electron particle does not exist. "Does an Electron 'particle' exist? N. Tesla, Heaviside, JC Maxwell & CP Steinmetz said NO"

Truth: 👉 Electrical Generator

The Self-Powered Generators of Barbosa and Leal

In July 2013, two Brazilian men, Nilson Barbosa and Cleriston Leal, published a series of patents which appear to be very significant. Their patent WO 2013/104042 published on 18th July 2013, is entitled “Electromagnetic device for Capturing Electrons from the Ground to Generate Electricity” and has some very interesting features. It describes a simple device which they describe as an “electron trap”. Their patents are written in Portuguese and an attempted translation of three of them is included at the end of the Appendix.

An unusual feature of this design is the fact that it has a continuous conductive loop, in which it is claimed, current flows continuously, even without the need for an applied voltage. Instead, it is the magnetic fields of electromagnets which keep the current flowing. They state that an insignificant amount of input power produces a substantial power output, and they consider a COP of 100 to be about the minimum performance which can be expected from the design. That is a 1 watt input for a 100 watt output. One version of the electron trap looks like this:


The inventors describe their device like this: “this electromagnetic-field-generating device, powered by a power source, produces an electromagnetic field which induces an electric current in a closed conductive circuit, creating an interaction between the magnetic poles of the equipment and the magnetic poles of the earth - through both electromagnetic attraction and repulsion. An endless supply of electrons is drawn from the earth into the conductive closed loop, which is connected to the ground through a conductive interconnected grid. The attracted electrons add to the current already flowing in the conductive closed loop, making power available for driving high-power loads, although the device itself is supplied with only a small amount of power.”

One very interesting feature is that the continuous-loop coil formed by wire 4 in the diagram above, is literally, only two turns of wire. The power-gaining mechanism, amazingly, is the earth wire (shown in blue) which is merely wrapped around wire 4 and not directly connected to it as the electron-transfer link is by induction. With this arrangement, the current circulating in the closed loop wire 4, attracts more electrons from the ground, flowing through the wrapped connection of wire 5, into wire 4, augmenting the current flow there by a major amount. Wire 3 can have an alternating voltage applied to it in order to get alternating current in wire 4, but please understand that the current flowing in wire 4 is not the result of the current in wire 3. If the current in wire 3 is DC, then the current in wire 4 will be DC as this is not a conventional transformer, but instead, it is an electron trap, operating in an entirely different way.

The electron trap can be connected in an AC circuit of this type:


Explanation: If you look at Barbosa and Leal's invention, you see that, The current in the wire creates a vortex field around it (Ether field), and this vortex is attracted by a wire wrapped around the primary coil .

Here, the earth wire 5 is wrapped around the continuous loop wire 4, feeding it additional electrons captured from the ground. The ends of wire 4 are connected together to form the loop, and that connection also forms the positive side of the output (where a DC output is being produced). The magnetic field produced by the current flowing in wire 3, acts on the electron flow coming from the earth, but as it does not provide any of the electric power flowing in wire loop 4, the current flowing in wire 3 can be tiny, without affecting the power output.

In their patent WO 2013/104043, also of 18th July 2013, they show several different ways of connecting their electron trap in a useful circuit. For example, like this:



Here, the battery 13, is used to power an ordinary inverter 12, which produces a high alternating voltage, in this case, at very low power. That voltage is applied to the wire 3.1 to 3.2 of the electron trap, creating an oscillating magnetic field, which creates an oscillating inflow of electrons into the closed loop wire (4), which creates an amplified electrical output at the same frequency – typically 50 Hz or 60 Hz as those are the common mains frequencies. That amplified power output from the electron trap 14, is passed along wire 18 to an ordinary diode bridge 10, and the pulsing DC from the bridge is smoothed and used to replace the battery input to inverter 12. The battery is now switched out of the circuit and, as well as making the overall circuit self-powered, the power coming from the electron trap is used to recharge the battery if it needs recharging (and/or, perhaps, to charge the batteries of an electric car). Because the electron trap needs almost no input power at all, the input power to the inverter is very small, and so a good deal of additional AC power can be drawn off through cable 17, and used to drive powerful electrical loads, with no electrical power being needed from the battery. Being self-powered, the COP value for the circuit is infinity.

Just as there are several different ways of using an electron trap in a circuit, there are several ways of constructing and connecting an electron trap. While it is possible to arrange the components so that the power output is 2-phase or 3-phase, here we will just deal with the ordinary, household, single-phase power supply.

The first variation is to use more than one frame. Two frames can be connected like this:



This is the actual drawing from the patent and it presents a slight problem in that it is not physically possible to implement the number 4 wire in the way shown. Each frame will have two complete turns wound on it, although the drawing does not show this. Because of the inaccuracy of the drawing, I am not able to say if the coil turns on frame 2, are in the same direction as those on frame 1. There are four possible ways of winding these 2-turn coils when interconnecting them, so perhaps experimentation can be used to determine which method works best.

With this two-frame arrangement, there is just the one earth wire 5, as before, again, it is wrapped around wire 4 rather than being physically connected to it. The continuous wire loop 4 has two ends as before, but there are now two 3.1 wire ends and two 3.2 wire ends. The Portuguese translation programs produce highly questionable results for this area of the patent, but I gather that the inventors intend the two 3.1 ends to be connected together and the two 3.2 ends to be connected together, and then the joined ends are treated exactly as before, effectively putting the two windings in parallel.

One disadvantage of this design is that it is not portable due to the earth connection. Barbosa and Leal deal with this problem in their patent WO 2013/104041 of the same date where they show a method of constructing an electron trap which collects excess electrons from the air. If you feel that there are no excess electrons in the air, then consider the fact that all of the aerial designs in chapter seven all extract and use those electrons. Also, consider the amount of electricity in a lightning strike, where much of the electrical energy comes from the air, and remember that world wide, there are between 100 and 200 lightning strikes every second.

The free-electrons-in-the-air electron trap is somewhat more complicated than the earth-wire electron trap, with four pairs of coils (3 and 4) being mounted inside two aluminium hemispheres (1):



The methods for using the air-electrons trap are the same as those for the earth-wire electron trap. An earth-wire video demonstration is here: here with 22 watts producing 6 kilowatts. To further research this invention, try the extensive information available via here.


🌀 Nikola Tesla's Ether Technology:
💠 Harnessing the power of back electromagnetic fields (Back EMF)
💠 Back EMF generates Lenz's Force in generator 💠 When the output energy is not affected by the Lenz (free) force, a self-powered mechanism will be established from the AC generator head to the induction motor. And the kinetic energy of the induction motor at that time was only supposed to stir the Ether by Nikola Tesla's "Rotating Magnetic Field". That's the mechanism for a Free Energy AC generator - no fuel needed - Self-powered generator.

AC generator without fuelFree Energy Will Change Our World Forever


👉 Free Energy AC generator



An attempted translation of the three Barbosa/Leal patents is here:

WO Patent 2013/104043               18th July 2013             Inventors: Nilson Barbosa and Cleriston Leal


ELECTRIC ENERGY GENERATION SYSTEM WITH FEEDBACK


Inventors: Nilson Barbosa et Cleriston de Morales Leal




Abstract:
The present invention relates to electric energy generation equipment comprising a basic circuit formed by a rectifier (10), for example, an AC/DC converter connected in series to an inverter (12), for example, a DC/AC converter, and a bank of batteries (13) connected in series between the rectifier (10) and the inverter (12). An electron-capturing element (14), which can be either a free space electron-capturing element or, alternatively, an earth electron-capturing element, is connected in series to the basic circuit formed by the rectifier (10), the inverter (12) and the battery assembly (13). The bank of batteries (13) powers the basic circuit because it is connected to the system. Consequently, the inverter (12) converts direct current into alternating current and supplies this current to the electron-capturing element (14). After receiving the electric current from the inverter (12), the electron-capturing element (14) starts capturing electrons from the alternating current and powering the rectifier (10), which converts the alternating current into a direct current in order to recharge the bank of batteries (13) and power the inverter (12) which powers the electron-capturing element, closing the feedback loop, and also providing electric energy for consumption by external loads.

WIPO Patent Application WO/2013/104043 Filing Date: 01/11/2013
Application Number: BR2013/000016 Publication Date: 07/18/2013

Assignee: EVOLUÇÕES ENERGIA LTDA (Rua Santa Tereza 1427-B Centro - Imperatriz -MA, CEP -470 - Maranhão, 65900, BR)


SELF-POWERED ELECTRICITY GENERATOR



Technical field
The present invention relates to a device for generating electricity, in particular self-powered equipment for generating electricity.

Description of the Related Art
There are many methods for generating electricity using electromagnetism, but all of these are electromechanical devices using magnets and have limited generating capacity and an ecological impact which makes them unsuited to large scale projects.

Objectives of the Invention
The aim of this invention is the sustainable generation of electricity, using a generator which is able to produce large amounts of electricity from an extremely low input current, which initially is supplied by a bank of batteries, but subsequently is supplied by the output from the generator which is also able to power external loads.

The above objective, and other objectives, are achieved by the present invention through the use of a typical Uninterruptible Power Supply circuit comprising of an AC/DC rectifier feeding a battery bank which powers a DC/AC inverter, which is connected to a device to trap electrons from space (as described in Brazilian patent application No. BR1020120008378 of 13th January 2012) or alternatively, a device which extracts electrons from the Earth (as described in Brazilian patent application No. BR1020120008386 of 13th January 2012), which then passes the extracted electrons to the AC/DC rectifier, charging the battery bank, thus closing the loop as well as providing electricity to power external loads.

The self-powered system for generating electricity from the present invention can be fixed or mobile. It is fixed when using electron capture from the earth due to the ground connection, or mobile when using electron capture from space.

The self-powered electricity generating system of this invention may be configured in several different ways, each using the same inventive concept but using different arrangements of components. Different versions include single-phase, two-phase or three-phase versions, producing outputs of any power and voltage.

Brief Description of the Drawings
The present invention will now be described with the aid of drawings, but this patent is not limited to the versions and details shown in these drawings, although they show additional details and advantages of the present invention.

The drawings:

Fig.1 - shows a basic circuit system for self-powered electricity generation of the present invention




Fig.2 - shows a first embodiment of the constructive system for self-powered electricity generation of the present invention




Fig.3 - shows a second embodiment of the self-powered system for generating electricity of the present invention




Fig.4 - shows a third embodiment of the self-powered system for generating electricity of the present invention




Fig.5 - shows a fourth embodiment of the self-powered system for generating electricity of the present invention




Fig.6 - shows a fifth embodiment of the self-powered system for generating electricity of the present invention;



Detailed description of the Invention: 
There are different ways of closing the self-feeding cycle depending on the circuit configuration chosen. Some of these arrangements are shown in Figures 2 to 6, wherein the main circuitry continues to oscillate, continuously generating instant electricity.


As shown in Fig.1, the self-powered system for generating electricity comprises a basic circuit consisting of a rectifier (AC/DC converter) 10 which is connected in series to an inverter (DC/AC) 12. A bank of batteries 13 is connected between the rectifier 10 and the inverter 12. The output from the DC/AC inverter 12, connects to an electron-trap 14 which can extract electrons from space (as described in Brazilian patent application No. BR1020120008378 of 13th January 2012) or alternatively, extracts electrons from the Earth (as described in Brazilian patent application No. BR1020120008386 of 13th January 2012).

When connected, the battery bank 13 provides power to the DC/AC inverter 12 which converts the direct current into alternating current and provides current to the electron-trap 14. The output of the electron trap 14 is passed through wire 18, to the AC/DC bridge rectifier 10, which keeps the battery bank charged as well as powering the DC/AC inverter 12. Additional power is passed to external equipment through wire 17.


Fig.2, shows another embodiment of the system of this self-powered electric power generation equipment. It comprises a typical Uninterruptible Power Supply circuit of a battery charger (AC/DC converter) 21 connected to a drive device (a DC/AC inverter) 23 and between them, a battery bank 22 forming the basic circuit. Additional devices are an electron-trap 27 which may collect free electrons from space (as defined in Brazilian patent application No. BR1020120008378 of 13th January 2012) or, alternatively, collects electrons from the Earth (as described in Brazilian patent application No. BR1020120008386 of 13th January 2012). The 3-phase electronic switch 24 normally connects 24.1 to 24.3 connecting the electron trap 27 to inverter 23. Connected in parallel is the surge suppressor 25, which, when activated, via filter 26, causes switch 24 to disconnect the 24.3 to 24.1 link and instead, connect 24.3 to 24.2.

An alternative arrangement for use in emergency situations, is to use the system no longer self-powered. For this, the system is comprised of a power input from an external power source, directly to the interconnection point 29 to provide power to surge suppressor 25, which provides power to feed the power output point 28 in order to power external loads. When the electron-trap 27 is turned off, the electronic transfer switch 24 reverts to its default position which connects point 24.1 to point 24.3 causing the circuit to function, once again, in its self-feeding mode. As soon as the electron sensor 27 provides sufficient power to the over-voltage sensor 25, it operates the transfer switch 24 through filter 26, ending the self-feeding phase and supplying energy directly to the power output point 28, in order to feed external loads.


Fig.3 shows another embodiment of the self-powered system for generating electricity, comprising a device which includes the basic circuit of a typical Uninterruptible Power Supply, consisting of a battery charger (AC/DC converter) 31 connected to a drive device (inverter DC/AC) 35 and attached to them, a battery bank 32. This basic circuit together with other devices is connected to an electron-trap 37 for collecting free electrons from surrounding space or, alternatively, an Earth-connected electron trap 37. We have then, a bank of batteries 32 connected to the DC/DC converter 33, which is connected to the phase transfer switch 34 / 34.1 which is connected to point 34.3, which connects to the inverter 35, and so, the electron-trap 37.


Fig.4 shows another embodiment of the system for self-powered electricity generation which is comprised of a basic circuit of a typical uninterruptible power supply, consisting of a battery charger (AC/DC converter) A connected to an inverter (DC/AC) 42 and attached to them, battery bank 41, and this basic circuit together with other devices are connected to a free space electron-capture device 44 or an earth-connection electron-trap 44. Comprising thus, a battery charger A connected to a battery bank 41, which is connected in series with inverter 42 at point B which is in series with point C of inverter 42 which is in series with the electron sensor 44, which is in series with the phase transfer switch 43 via the three-phase load output connection point 45. The phase transfer switch 43 is in series with the inverter 42, which is connected in series the (AC/DC converter) battery charger A feeding the battery bank 41.

An alternative construction for use in emergency situations, in which the system ceases to be self-powered, the system may include power input from an external power source, via the interconnection point 46, thus providing electricity output 45, to power external loads. The battery bank 41 provides power to the inverter 42 which converts the direct current into alternating current and feeds the electron trap 44. The phase transfer switch closes when the batteries need recharging.

Sensor 44 captures electrons, producing alternating current, which feeds the phase transfer switch 43 with alternating current input power. The phase transfer switch 43 feeds the inverter 42 which charges the batteries, closing the self-powering loop which provides power at the output 45, feeding both the power input and any external loads.


Fig.5 shows another embodiment of the system for self-powered electric power generation equipment comprising a circuit which includes a typical uninterruptible power supply comprising a battery charger (AC/DC converter) 51 connected to a DC/AC inverter 53 and attached to them, a battery bank 52. This basic circuit together with other devices are connected to a space free-electron capture device 56 (as defined in Brazilian patent application No. BR1020120008378 of 13/1/12) or, alternatively, an earthed free-electron collector 56 (as defined in Brazilian patent application No. BR1020120008386 of 13/1/12). This then comprises a battery charger 51 which is connected in series with a battery bank 52, which is connected in series with the inverter 53, which is connected in series with the transformer 55 at its point C, which is in series with its point B which is in series with the electron collector 56, which is in series with the battery charger 51 which is connected to the load exit point 58, which is also the circuit entry point 59, which is in series with the phase transfer switch 54 section 54.1, which is connected to terminal 54.3, which is in series with point A of the transformer 55 which exits at point B. Points A and 54.3 as well as the parallel points 54.1 and 54.2, are all parallel to the battery charger 51, the battery bank 52, the inverter 53 and to point C of the transformer 55.

An alternative construction for use in emergency situations, in which the system ceases to be self-powered, the system may include an external power input point 59, allowing phase transfer switch 54 to provide power output 58, to feed external loads. Battery bank 52 provides power to the inverter 53, which converts the direct current into alternating current, feeding point C of the transformer, which comes out at points B and A of the transformer 55. Point B of the transformer feeds the electron-trap 56 producing alternating current which feeds the battery charger 51, recharging the battery bank 52.

The battery charger 51 is connected in parallel with the transfer switch 54 via connection points 54.1 and 54.3, feeding point A of the transformer, which comes out at point B. Point A of the transformer and the switch transfer points 54.3 and 54.1 are in parallel to the battery charger 51, the battery 52, the inverter 53 and point C of the transformer 55.


Fig.6 shows another embodiment where a rectifier 61 is connected to an inverter 63 and a battery bank 62, and to a space free-electron trap 64 or alternatively, an earth electron trap 64 comprising thus, a delta (AC/DC) converter 61, which is connected in series to a battery bank 62, which is connected in series with the (DC/AC) inverter 63, which is in series with the electron collector 64 which is connected in series with the delta converter (AC/DC) 61 whose AC part is in series with the alternating AC current inverter 63 via a connecting wire 65 which is in parallel with the DC part of the delta converter 61 with the battery bank 62 and the DC part of inverter 63. An alternative construction for use in emergency situations, in which the system ceases to be self-powered, the system may comprise a power input from an external power source, via the interconnection point 66 connected to the delta converter 61, the output 67 supplying power, to the external loads.

Battery bank 62 provides power to the inverter 63, which converts the direct current into alternating current, powering the free-electron collector 64. The captured electrons from collector 64 form an alternating current which feeds the delta converter 61 via an output power load wire 67. The alternating part of the three-phase delta converter 61 is fed with alternating current from inverter 63 via connecting wire 65, which is connected in parallel to the continuous DC delta converter 61, which feeds the battery bank 62 and with the continuous portion the inverter 63, closing the cycle of self-feeding and supplying power at the output 67, which is the output power point. Having described examples of preferred embodiments, it should be understood that the scope of the present invention encompasses other possible forms of construction, using the electron collectors connected to a basic circuit of a typical uninterruptible power supply of energy, known as a UPS, comprising a rectifier device (an AC/DC converter) 10, connected to one inverter (DC/AC converter) 12, and attached between them, an energy storage device (typically, a battery bank).
Revealed At Last...
Free Energy Magnetic Generator and synthesizes many other technologies imbued with Nikola Tesla's technological identity

✔ Nikola Tesla’s method of magnifying electric power by neutralizing the magnetic counter-forces in an electric generator

Generates Energy-On-Demand: 👉 Free Energy Will Change Our World Forever

✔ Combination of induction motor and alternator 
✔ Combine generators with induction motors - self-powered generators with rotary motion
✔ Various methods of generating high power immobile generators

✔ Or maybe called Overunity for the system. Mother Nature doesn't care about people calling or naming phenomena. Overunity/Free Energy, Zero Point Energy (ZPE) are just a few different words

*****************

A very important part of the above patent is the device described as a “collector of free-electrons”, either from the earth or from space. We have to go to the patent applications mentioned above to find the details of these designs: 


Application Number: BR2013/000015, Publication Date: 07/18/2013, Filing Date: 01/11/2013

Assignee: EVOLUÇÖES ENERGIA LTDA (Rua Santa Tereza 1427-B Centro - Imperatriz, MA- CEP -470 - Maranhäo, 65900, BR)

ELECTROMAGNETIC ELECTRON TRAP FOR ELECTRIC POWER GENERATION



Technical Field
The present invention refers to electromagnetic equipment for electric power generation or alternatively for thermal power generation. More specifically equipment capable of producing abundant electricity and thermal energy from a tiny amount of input electrical energy.

Description of the Related Art
According to Lenz's law, any induced current has a direction such that the magnetic field it generates opposes the change in magnetic flux which produced it. Mathematically, Lenz's Law is expressed by the negative sign (-) that appears in the formula of Faraday's Law, as follows. The magnitude of the induced emf (ε) in a conducting loop is equal to the rate of change of magnetic flux (ΦΒ) with time:


As an example of application of Faraday's Law, we can calculate the electromotive force induced in a rectangular loop that moves in or out, with constant speed, a region of uniform magnetic field. The magnetic field flux through the surface limited by the loop is given by:


and if the coil has a resistance (R) and the induced current:



A conductor traversed by an electric current immersed in a magnetic field undergoes the action of a force given by:


Thus, the effect of the current induced in the loop appears as forces Ff, and F - FM. The first two cancel each other out and the third is cancelled by an external force Pext needed to maintain the constant speed loop.

As the force FM must oppose the force Fext, current (i) induced in the loop by varying the magnetic flux must have the meaning indicated in Fig.3. This fact is a particular example of Lenz's Law.

Considering the experimental activities discussed with Faraday's law, when a magnet approaches a coil, the induced current in the coil has a direction as shown in Fig.1. This generates a magnetic field whose north pole is facing the north pole of the magnet, that is, the field generated by the induced current opposes the motion of the magnet.

When the magnet is moved away from the coil, the current induced in the coil has a direction opposite to that shown in Fig.1, thereby generating a magnetic field whose south pole is facing the north pole of the magnet. The two poles attract each other, that is, the field generated by the induced current opposes the movement of the magnet away from the coil. This behaviour is present in all current power generators, and known as ‘engine brake’ is highly undesirable as it increases the resistance and so, the energy loss.

When two electromagnetic coils are placed facing each other, as shown in Fig.2, there is no current in either of them. At the instant of power-up of one of the coils, the current in the coil, generates an induced current in the second coil. When powered up, the current in the coil goes from zero to its maximum value, and then remains constant.

Thus, when the current is changing, the magnetic field generated by it, (whose north pole faces the second coil) is also changing and so the magnetic flux of this field through the second coil is also changing. Then there is a current induced in the second coil whose sense is such that the magnetic field it generates tends to decrease the flow mentioned above, that is, its north pole confronts the north pole of the first field coil.

When the power switch is opened, the current in the first coil drops from its maximum value to zero, and correspondingly its magnetic field decreases. The flux of the magnetic field in the second coil also decreases, and the induced current now flows in the opposite direction. This current flow direction produces an enhancing magnetic field, that is, it has a south pole facing the north pole of the field of the first coil.

Thus, there is a realisation of the principle of conservation of energy, expressed by Lenz's law, wherein any induced current has an effect which opposes the cause that produced it. Assuming that the induced current acts to favour the variation of the magnetic flux that produced the magnetic field of the coil, it would have a south pole facing the north pole of the approaching magnet, causing the magnet to be attracted towards the coil.

If the magnet were then released, it would experience an acceleration toward the coil, increasing the intensity of the induced current and thus create an enhanced magnetic field. This field, in turn, would attract the magnet with increasing force, and so on, with a continuing increase in the kinetic energy of the magnet.

If energy were to be withdrawn from the magnet-coil system at the same rate at which the kinetic energy of the magnet increases, then there would be an endless supply of energy. So it would be a perpetually operating motor, which would violate the principle of conservation of energy. Therefore, it can be concluded that current generators feature a large energy loss during the generation of electricity.


Objectives of the Invention
An objective of the present invention is to contribute to the generation of sustainable energy, proposing an electromagnetic machine capable of producing abundant electricity from an extremely low input of electrical energy.

The above objective and other objectives are achieved by the present invention by a device comprised of at least one electromagnetic field-generating device (without a core or with at least one core) powered by an electrical power source (without a core or with at least one core) having their coils, or sets of coils, wound on at least one common conductive member in a closed circuit which itself has a polarised voltage which is connected to at least one conductive interconnection element which is connected to a grounding grid, these interconnections creating a new technical effect, namely, the appearance of an electric current which keeps circulating in a closed conductive loop, and which can therefore be used to power external loads.

The device which is the object of the present invention operates as follows: the electromagnetic field generating device, powered by a power source, produces an electromagnetic field which induces an electric current in a closed conductive circuit, creating an interaction between the magnetic poles of the equipment and the magnetic poles of the earth - through both electromagnetic attraction and repulsion. An endless supply of electrons is drawn from the earth into the conductive closed loop, which is connected to the ground through a conductive interconnected grid. Attracted electrons add to the current already flowing in the conductive closed loop, making power available for driving high-power loads, although the device itself is only supplied with a small amount of power. Thus, advantageously, the device which is the object of the present invention, acts as a trap for electrons from the earth and this allows the generation of electricity.

Advantageously, the present electromagnetic equipment generates either electricity or thermal energy, providing access to this new source of energy is through an electromagnetic field. The interconnections of the components of the electron-trap of the present invention, cause an advantageous new technical effect, namely, the appearance of an electric current which keeps circling in the conductive closed circuit, with or without voltage being applied and even without a load being connected to the loop - provided that the electron-trap is connected.

The proposed sensor can also be used to generate thermal power, depending on the form in which you want to use the effect of the flow of electrical current produced in this electromagnetic equipment.

For the generation of thermal energy in amounts proportional to the power of the electron-trap, through the movement of electrons in the conductive closed loop itself, the resistance should be increased by increasing the number of turns around the cores in the conductive element of the closed circuit, and in that instance, the coils of the electromagnetic field generating device, will then be made of heat-insulated electrical circuit components, bearing in mind the required temperature which is to be produced. The thermal energy generated by the electron-trap can be used in any application from domestic to industrial applications.

This technology can also be used for various technical purposes in electric machines. By "electrical machines", it should be understood to include: static electrical machines, transformers, ballasts, rotating electrical machines, synchronous machines, dual power supply machines, current rectifiers in synchronous cascade, external pole machines, synchronous current machines alternating current machines and/or direct current machines, electronic equipment and electrical resistances. The capture of electrons can provide single-phase, two-phase or three-phase supplies, operating at low, medium or high voltage.

The capture of electrons by induction, does not impact on the environment. The fact is that we use as the capturing force, only a negligible amount of electricity relative to the current captured by the sensor. The relationship between power input and the quantity of electricity generated by the electron-trap is at least 1 to 100, that is, for each 1 watt provided to the sensor, there is at least 100 watts of power available for external loads. This relationship, however, is not limited, as it depends on the mounting of the electron-trap and the objectives of the circuit, and so, the generated power can be greater than 100 times the input power.

Another advantage of the earthed electron- trap proposed in the present invention is that the electron-trap can transport electrons from point "A" to point "B" without a voltage drop across the closed-loop conductive element - if it is biased with a voltage - regardless of the distance between the points depending on the strength and quantity of the electromagnetic field generating devices. It is also possible to transport electrons when the conductive element in a closed circuit is itself not polarised. Thus, the electric current is transported without voltage, just by the magnetic field formed between the device and the generator of the electromagnetic field.


Brief description of the Drawings
The present invention will now be described with the aid of drawings, but the design is not limited to the implementations shown in these drawings, although they show other details and advantages of the present invention.


The figures show: 


Fig.1 - illustrates Faraday’s law.


Fig.2 – is a representation of Faraday’s law.




Fig. 3 – is a representation of Faraday’s law.




Fig. 4 - is a perspective view of an electron-trap with a single phase coil.




Fig.5 – is a perspective view of a single-phase electron trap with two coils.




Fig.6 - is a representation of the effect of electromagnetic flux in the coils around the cores of the electron trap.




Fig.7 - is a representation of an electrical circuit with two coils of the link/coil conductor polarised.




Fig.8 - is a representation of an electrical circuit with two coils of the link/coil conductor not polarised.



Detailed Description of the Drawings



Fig.4 shows one of several types of electron-trap proposed by the present invention, where the electron-trap is single-phase and consists of at least one electromagnetic field-generating device with at least one set of coils, in this case it happens to be an electromagnetic type coil with one common magnetic core, but it could alternatively have any number of windings of any kind and shape. However, the electron-trap proposed by the present invention can be constructed with a different type of electromagnetic field generating device, such as an electromagnetic inductor or magnet of any type or shape, or any combination of them, and in unlimited numbers for each phase of the electron trap.

When winding these coils, for example, coil 4-4, each coil must have at least one complete turn, preferably two turns if the objective is to generate electricity, and preferably four turns if the objective is provide thermal energy. The number of turns in the coils wound around the common core, is directly related to the amount of current to be generated.

At least one conductive interconnection element, in this case the driving member 5 - which can be copper or any other suitable conductive, material whether insulated or not insulated, connects or loop-links wire 4 to the ground grid. The connection between the conductor 5 and wire 4 is by electromagnetic induction. Winding 4 is also the power supply for the loads which are to be powered by the captured electrons.

Also in Fig.4, the power wires 3.1 and 3.2 (live phase and neutral) have an input from an external power coil 1 which can be energised from any external source of electricity such as a power grid. The trapped electrons can be configured to supply DC or AC current. Thus, if the coil 1 power source is alternating electrical current - AC, then the electron-trap provides alternating electrical current. If the power source is continuous electrical current - DC, then the electron-trap provides continuous electrical current - DC. The electrical supply provided by the trapped electrons can be single-phase, two-phase or three-phase, and at low, medium or high voltage.



Fig.5 shows an electron-trap with two single-core phase coils: 1 and 2, although these coils may be of any type and shape. However, the electron-trap proposed by the present invention can be constructed with other types of electromagnetic field generating device, with at least one electromagnetic inductor or electromagnet which can be of any type and shape, with any combination of them, and in unlimited quantities in each phase of the electron-trap.

The coils on frames 1 and 2 may have other shapes, but they must each have at least one complete turn, particularly in coil 4. The number of turns in this winding are directly related to the amount of current to be generated. This coil also makes the interconnection between the coils 1 and 2 forming the link between their two cores.

At least one conductive interconnection element, in this case the driving member 5 - which can be copper or any other suitable conductive, material whether insulated or not insulated, connects or loop-links wire 4 to the ground grid. The connection between the conductor 5 and wire 4 is by electromagnetic induction.

In electron-traps which have numerous sets of coils 1 and 2, the ends of all of the power-supply conductors 3.1 can all be connected to each other, and all of the 3.2 conductor ends may be connected together. Thus, all of the coils 1 and 2 can be fed exactly the same voltage. The power to energise coils 1 and 2 can be provided from any external source of supply of electricity such as a power grid.

In electron-traps which have numerous coils 1 and 2, a single coil winding 4 connects the cores of all of the coils 1 and 2.


The diagram shown in Fig.6, illustrates the magnetic induction 6 around the core "X" of the coil 1. This induction causes electrical current flow in the conductor coil link 7/4, attracting electrons from the earth, through the conductive member 5, to the magnetic field of the electron-trap, where those electrons are added to the current generated by induction in the link coil 4 conductor loop circulating between north and south magnetic poles.


Fig.7 shows how the connections should be made in one version of the electrical circuit of the electron-trap proposed in this invention. The diagram shows the electrical circuit of an electron-trap where the link/coil driver 4 is polarised with a voltage. This is one form of construction for an electron-trap which has two coils 1 and 2, where a link/coil loop conductor 4 is biased with a voltage, that is, there is a link connecting the coil conductors 4 of a power supply 3.1 or 3.2, whatever the stage.

In this way, earth electron-traps, by adopting this circuit, that is, with the link/conductor loop 4 and polarised voltage on coils 1 and 2, besides being used as a power source for external loads, can also be used for thermal power generation.


Fig.8 shows how connections should be made in another electric circuit electron-trap proposed in this invention. the circuit illustrates a circuit of an electron-trap with a non-polarised link / coil driver 4. This is one form of construction of the electron-trap where a link / coil conductor 4 of the spiral conductor coils 1 and 2 is not polarised, that is, there is no such link connecting conductor / conductor coil conductors 4 of a coil 3.1 or 3.2.

Thus, earth electron-traps adopting this circuit, that is, with the link coil not polarised, the current flows without there being voltage in the link/coil conductor 4 joining the first and second coils by electromagnetic induction. They can also be used for generating thermal energy.

The structure of the circuit - in the open or closed coils 1 and 2, and always in the closed link / loop lead 4 - makes it possible to generate current by induction and electron capture by electromagnetism on the link conductor 4 - where current is generated and stays in motion with or without voltage, as the coils 1 and 2 are being fed. Thus, the present invention provides a new concept for electrical energy generation, since it is obtained from an electric current circling without consumption and even without an output load being attached to it.

Additionally, because the induced electrical current flows regardless of the voltage present, it can be used as a current stabiliser for electrical networks whether they be single-phase, two-phase or three-phase, with low, medium or high voltage.

_______________________________________________________________


ELECTROMAGNETIC DEVICE FOR CAPTURING FREE
SPACE ELECTRONS TO GENERATE ELECTRICITY


Application Number: BR2013/000014
Publication Date: 07/18/2013
Filing Date: 01/11/2013
Assignee: EVOLUÇÕES ENERGIA LTDA (Rua Santa Tereza 1427-B Centro - Imperatriz -, MA - CEP -470 - Maranhão, 65900, BR)


Abstract
The invention relates to a device that comprises at least three sets (A, B, C, D) of at least one device for generating an electromagnetic field (3) and (4), powered by an electricity source (without a core or with at least one core) the cores thereof or any extension thereof, preferably the windings or sets of windings thereof, being surrounded by at least a single conductive element forming a polarised and energised closed-circuit (5), the sets of electromagnetic-field generating devices (3) and (4) being linked together by their opposing poles to encourage the interaction of their electromagnetic fields, which ideally, are located between two hollow metal hemispheres (1) so as to concentrate and enhance the electromagnetic fields, these interconnections causing, as a novel technical effect, the emergence of an electrical current that circulates, with or without voltage, in the conductive element forming a closed-circuit (5) - even if no load is connected.

🌀 Nikola Tesla's Ether Technology:
💠 Harnessing the power of back electromagnetic fields (Back EMF)
💠 Back EMF generates Lenz's Force in generator 💠 When the output energy is not affected by the Lenz (free) force, a self-powered mechanism will be established from the AC generator head to the induction motor. And the kinetic energy of the induction motor at that time was only supposed to stir the Ether by Nikola Tesla's "Rotating Magnetic Field". That's the mechanism for a Free Energy AC generator - no fuel needed - Self-powered generator.

AC generator without fuelFree Energy Will Change Our World Forever


👉 Free Energy AC generator



Description
"ELECTROMAGNETIC EQUIPMENT FOR FREE ELECTRON-CAPTURE
FROM SPACE, FOR ELECTRICITY GENERATION"


Technical Field
The present invention relates to electromagnetic equipment for electrical power generation and/or thermal power generation. More specifically, equipment capable of producing abundant electricity and thermal energy from a tiny input of electrical energy.

Description of the Related Art
According to Lenz's law, any induced current has a direction such that the magnetic field it generates opposes the change in magnetic flux that produced it. Mathematically, Lenz's Law is expressed by the negative sign (-) that appears in the formula of Faraday's Law, as follows.
The magnitude of the induced emf (ε) in a conducting loop is equal to the rate of change of magnetic flux (ΦΒ) with time:


As an example of application of Faraday's Law, we can calculate the electromotive force induced in a rectangular loop that moves in or out, with constant speed, a region of uniform magnetic field. The magnetic field flux through the surface limited by the loop is given by:


and if the coil has a resistance (R) and the induced current:



A conductor traversed by an electric current immersed in a magnetic field undergoes the action of a force given by:


Thus, the effect of the current induced in the loop appears as forces Ff, and F - FM. The first two cancel each other out and the third is cancelled by an external force Pext needed to maintain the constant speed loop.

As the force FM must oppose the force Fext, current (i) induced in the loop by varying the magnetic flux flux must have the meaning indicated in Fig.1. This fact is a particular example of Lenz's Law.

Considering the experimental activities discussed with Faraday's law, when a magnet approaches a coil, the induced current in the coil has a direction as shown in Fig.2. This generates a magnetic field whose north pole is facing the north pole of the magnet, that is, the field generated by the induced current opposes the motion of the magnet.

When the magnet is moved away from the coil, the current induced in the coil has a direction opposite to that shown in Fig.2, thereby generating a magnetic field whose south pole is facing the north pole of the magnet. The two poles attract each other, that is, the field generated by the induced current opposes the movement of the magnet away from the coil. This behaviour is present in all current power generators, and known as ‘engine brake’ is highly undesirable as it increases the resistance and so, the energy loss.

When two electromagnetic coils are placed facing each other, there is no current in either of them. At the instant of power up one of the coils, the current in the coil, generates an induced current in the second coil. When powered up, the current in the coil goes from zero to its maximum value, and then remains constant.

Thus, when the current is changing, the magnetic field generated by it, (whose north pole faces the second coil) is also changing and so the magnetic flux of this field through the second coil is also changing. Then there is a current induced in the second coil whose sense is such that the magnetic field it generates tends to decrease the flow mentioned above, that is, its north pole confronts the north pole of the first field coil.

When the power switch is opened, the current in the first coil drops from its maximum value to zero, and correspondingly its magnetic field decreases. The flux of the magnetic field in the second coil also decreases, and the induced current now flows in the opposite direction. This current flow direction produces an enhancing magnetic field, that is, it has a south pole facing the north pole of the field of the first coil.

Thus, there is a realisation of the principle of conservation of energy, expressed by Lenz's law, wherein any induced current has an effect which opposes the cause that produced it. Assuming that the induced current acts to favour the variation of the magnetic flux that produced the magnetic field of the coil, it would have a south pole facing the north pole of the approaching magnet, causing the magnet to be attracted towards the coil.

If the magnet were then released, it would experience an acceleration toward the coil, increasing the intensity of the induced current and thus create an enhanced magnetic field. This field, in turn, would attract the magnet with increasing force, and so on, with a continuing increase in the kinetic energy of the magnet.

If energy were to be withdrawn from the magnet-coil system at the same rate at which the kinetic energy of the magnet increases, then there would be an endless supply of energy. So it would be a perpetually operating motor, which would violate the principle of conservation of energy. Therefore, it can be concluded that current generators feature a large energy loss during the generation of electricity.


Objectives of the Invention
The present invention aims to contribute to the generation of sustainable energy, proposing electromagnetic equipment capable of producing abundant electricity from an extremely low input of electrical energy. The above objective and other objectives are achieved in the present invention by a device comprising at least three sets of at least one electromagnetic field generating device (without a core or with at least one core) powered by an electrical power source, having their cores or any extension of them, with their coils or sets of coils, wound on at least one common conductive member in a closed circuit which is polarised by a voltage source, and these sets of electromagnetic field generating devices are arranged with their poles in confrontation, to promote the interaction of electromagnetic fields, and, preferably, positioned between two hollow metallic hemispheres, in order to focus and enhance their electromagnetic fields - these interactions cause a new technical effect - the emergence of an electric current which keeps flowing in a closed loop, with or without voltage being applied to that closed loop, current which is capable of powering external loads - even if no load is attached to it.

The device which is the object of the present invention operates as follows: Sets of electromagnetic field generating devices to be powered by an electrical power source, produce an electromagnetic field which induces an electric current in a closed conductive circuit, creating an interaction between the magnetic poles, and through repeated electromagnetic attraction and repulsion, provides an endless supply of electrons to the conductive closed loop itself.

The electrons attracted by this technique, augment the current flowing in the closed conductive loop, which provides the current to power external loads of high power, in spite of the fact that the device itself is supplied with only a small level of power. Thus, advantageously, the device which is disclosed in the present invention forms a trap for electrons from space, resulting in the generation of electricity. The interconnections of the components of the electron-trap cause, a new technical effect, namely, the appearance of an electric current which keeps circling in a closed circuit, even without any voltage being applied to the closed circuit, and even without a load being connected to it. The present electromagnetic equipment generates electricity or thermal energy, providing access to this new source of energy through the use of an electromagnetic field.

The proposed sensor can also be used for the generation of thermal energy depending on the form of circuit which is to be used, resulting from the flow of electric current produced by this electromagnetic equipment.

This field generates a flow of electric current induced by electromagnetic coils, which appears in the linking interconnecting devices generating electromagnetic fields with electromagnets, inductors or magnets. This chain operates in a manner favourable to the variation of the magnetic flux produced by the magnetic field in the electron-trap. Thus, it creates a north pole and a south pole, providing an endless supply of electric current without resistance between the links which interconnect the devices which are generating the electromagnetic fields. So, induced electric current is generated with or without voltage in the interconnection links of electromagnetic field-generating devices, depending on the connection method of the electrical circuit of the electron-trap.

The free-electrons collected by the space electron-trap can form alternating current (AC) or direct current (DC). The ratio of input power to output power is 1 to 100, that is, the generated power can be 100 times greater than the input power when there is at least one link / coil driver between the coils and the inductors or electromagnets. This relationship, however, is not limited to a factor of 100, as it depends on the shape of the electron-trap and its objective.

Another advantage of the free space electron-trap of the present invention is that, with thermal insulation of the components in the electric circuit, it is possible to produce thermal energy at low, medium or high temperature, through the movement of the electrons in the conductors, coils and/or electromagnets. The temperature generated is linked directly to the number of turns in the coils.

Thermal power generation performed by the sensor can be used for boiling and/or evaporation of liquids to be used in other types of energy generation, for example, replacing the use of coal and natural gas. Another advantage of the proposed electron-trap of the present invention is that the electron-trap can transport electrons from one point "A" to a point "B", without a voltage drop in the link - if it is polarised - regardless of the distance between the points, depending on the strength and quantity of the electromagnetic field-generating devices. It is also possible to transport the electrons when the link devices generating the electromagnetic field are not polarised. In this way, the electric current is conveyed without voltage but only by the magnetic field formed between the coils. This methodology can be used in various fields.

Because of its simple construction, the electron-trap is a simple device which is compact, and performs low-cost power generation which can be used in all types of machinery, equipment and devices of all kinds, and many areas of application which require electricity in order to operate. The electron-trap can have single-phase, two-phase or three-phase output, and can generate electric current at low, medium or high voltage.


Brief description of the Drawings
The present invention will now be described with the aid of drawings, but the design is not limited to the implementations shown in these drawings, although they show other details and advantages of the present invention.


The figures show: 



Fig.1 - illustrates Faraday’s law





Fig.2 illustrates Faraday’s law where a magnet approaches a coil of just one turn.





Fig.3 is a view of one metallic hemisphere seen from above.





Fig.4 is a bottom view of the hemisphere with the coils in place.





Fig.5 is a side view of the free-space electron-trap.





Fig.6 is an underside view of the space electron-trap, with its coils and electromagnets.





Fig.7 a view from above of the space electron-trap with its coils and electromagnets.






Fig.8 is a perspective view of an electron-trap with its coils.





Fig.9 shows the circuit diagram of the device, indicating the effect of electromagnetic field.





Fig.10 - shows the circuit diagram of the connection of the inductor coils in sets (A, B, C and D).






Fig.11 - is an electromagnetic diagram representation of north and south poles of the sets of coils (A, B, C and D).





Fig.12 is a representation of the electrons being attracted and repelled by the device.


Detailed Description of the Drawings


Fig.3 is a top view of one of the two hollow metallic hemispheres 1 which is part of the electron trap of free space proposed in this invention. Hemisphere 1 is preferably made from, but not limited to, aluminium, and it has mounting tabs 2.


Fig.4 is a bottom view of metallic hemisphere 1. It has four electromagnetic field generating devices 3, positioned around the hemisphere and fixed to support 6 which is attached to hemisphere 1 by mounting tabs 2.


Fig.5 is a side view of the free space electron-trap. It shows the two metallic hemispheres 1 and 2 (which form an imperfect sphere), and three of the coils 3 which are attached to the mounting tabs 2 and three inductors 4 which form the closed circuit itself, and which are attached by conductors 5, and support member 6 on which are mounted coils 3 and their components.


        

Fig.6 and Fig.7 show the top and bottom views of the metallic hemisphere 1 which accommodates four coils 3 attached to the holder 6 (not shown) which is secured to the hemisphere 1 by its mounting tabs 2. Fig.6 also shows the inductors or electromagnets 4 their corresponding coils 3 and their interconnecting conductors 5. Each coil 3 and its linked inductor 4 forms a set. In Figures 6 and 7 there are four such sets, marked A, B, C and D. The coils 3, connected by their links 5, each have at least one turn, and if the objective is to generate electricity, then preferably two turns, and if the objective is thermal energy, then four turns. The coils 3 may have various different shapes. The number of turns in the coil 3 are directly related to the amount of current to be generated, and the connecting links 5 may be either a single conductor or more than one conductor, the cross-sectional area of conductor 5 being selected to carry the current which is to be generated.

In sets A, B, C and D, the link conductors 5 have at least one turn around coils 3. This winding is connected to the respective electromagnets 4 of each set (A, B, C and D) as shown in Figures 6 and 7. Please note that the inductors and electromagnets 4 can be any type of inductor, and other types of coil may be used.


Fig.8 shows the inter-connecting coils 5 for each of the five sets A, B, C or D linking between coils 3 and 4 in each set. As shown in Fig.6 and Fig.7, the link 5 makes the connection between coils 3 and 4. This means that the wires marked 5.1 are all connected together, and the wires marked 5.2 are all connected together. Doing this, establishes the interconnection links 5 shown in the drawings. The power supply wires marked 7.1 are connected together as are the wires marked 7.2. The wires marked 7.1 are connected to the live phase of the external power supply, while the other ends marked 7.2 are connected to the neutral of the external power supply.

In the space free-electron trap of the present invention, the coils 3 can be either single-phase, two-phase or three-phase. Also, the coils 3 may be powered by any voltage (V). The power coil 3 can be energised by any source of electrical energy such as a power grid. The electron-trap can be configured to produce alternating current or direct current. So, if the external power supply is alternating electrical current - AC, then the electron-trap provides an alternating electrical current output. If the power supply is DC, then the electron-trap provides an output of continuous electrical current - DC. The electron-trap can be configured for single-phase, two-phase or three-phase operation, with low, medium or high voltage outputs.


Fig.9 shows an electron-trap circuit diagram with four sets A, B, C and D of inductor coils 3 and 4. Induction is produced around core 9 of the three sets of coils A, B, C and D. The effect of the interaction of the electromagnetic fields 11 is shown. The induction via core 9, causes the circulation of electric current in the links 5, attracting the free electrons through the electromagnetic field of the trap. Then, the electrons join with the current generated by induction on link 5, circulating between the magnetic poles north-south and south-north.

By way of example, the coils 3 are shown wound on a single phase column type core, but these can also be of any kind or shape. The electron-trap proposed by the present invention can be constructed with another type of electromagnetic field generating device which has at least one electromagnetic coil or magnet or electromagnetic inductor which can be of any kind or shape, or any combination of those, and with any number in each phase of the electron-trap.

The electron capture occurs through an electromagnetic field which is formed with the connection of coils 3 with the electromagnets or inductors 4 through the links 5 between the eight components

This closure produces the displacement of the electrons in the coil 3 set (A) (for simplicity, referred to as coil 3A), these electrons are attracted by the protons of coil 3D, and are repelled by the electrons of the electromagnetic field of the coil 3D itself. These coil 3D electrons are attracted by the protons of the coil 3B, and are repelled by the electrons of the electromagnetic field of coil 3B. These electrons of coil 3B are attracted by the protons of coil 3C, and are repelled by the electrons of the electromagnetic field of the coil 3C itself. Similarly, the 3C coil electrons are attracted by protons of the 3A coil, and are repelled by the electrons of the electromagnetic field of the coil 3A itself. These coil 3A electrons are attracted by the protons of the 3D coil, and are repelled by the electrons of the electromagnetic field of the 3D coil itself. Analogously, the coil 3D electrons are attracted by the protons of the coil 3B, and are repelled by the electrons of the electromagnetic field of the coil 3B itself. These 3B coil electrons are attracted by the protons of coil 3C, and are repelled by the electrons of the coil itself induced 3C, and then the coil 3C electrons are attracted by protons of coil 3A, and are repelled by the electrons of the electromagnetic field of the coil 3A itself. That cycle continues as the sets of coils A, B, C and D are being fed by a voltage. These endless attractions and repulsions generate an electric current in the link coil 5.

In the electron-trap, the voltage is stable. Regardless of the amount of current generated-which can be very high, the voltage will be the same in the electric circuit of the sensor, because the current moves through the attraction and repulsion of the electrons, regardless of voltage.


Fig.10 illustrates a circuit diagram of the electrical connection between the coils 3 and 4 in sets A, B, C and D. It can be seen that the sets A, B, C and D are enclosed between the coils 3 and their associated inductors or electromagnets 4. The supply conductors 7.1 and 7.2, of sets A, B, C and D must be interconnected. When feeding power to the coils 3 and 4 the phase should be connected to 7.1 and the neutral to 7.2.

The sets A, B, C and D after being fed with electric current, generate voltage through the attraction and repulsion of the electrons in the linking coil 5, where there is at least one output load 8.1, which should be connected joining sets A and C, and at least one load output 8.2, which should be connected joining sets B and D. The output points 8.1 and 8.2 are the respective phases and neutral of power points 7.1 and 7.2.

In this way, a singl-phase electron-trap is created by two pairs of sets of coils/inductors 3 and 4. The 3/4 electromagnet coil set can be replaced by a 3/3 coil set, without any disadvantage to the electron-trap. Sets A, B, C and D, are inserted into a hollow metal hemisphere 1 preferably constructed from - but not limited to - aluminium. The hemisphere 1, whose function is to concentrate and maximise their electromagnetic fields, simulating an electron cloud, has a fixed support 6 connected to attachment tabs 2, and to which the coils 3 are fixed.



Fig.11 is a diagram of the electromagnetic north and south poles of the inductor coils 3 and 4 of sets A, B, C and D of the electron-trap. The electromagnetic behaviour described for Fig.9 is again demonstrated by the formation of the magnet assembly to the North Pole and South Pole being attracted and repelled by the lines of force of the magnet from the point "A" to point "D", point "A" to point "B", the point "B" to point "C", point "C" to point "A", and so on, as long as there is an electromagnetic field. The electromagnetic field of the space electron-trap provides that induced current in a direction similar to the variations of the magnetic flux that produced it. So, the magnetic field creates a north pole and a south pole in each of the sets A, B, C and D, as shown in Fig.11.

By feeding the coils 3 of the electron-trap with a desired voltage a magnetic field is generated in coils 3, between the four sets A, B, C and D, which form a flow of electrons. This flow of electrons augments the electron flow which is circulating in the closed-loop link-coil 5, thus implementing free electron capture from space. The electromagnetic field of the coil 3A runs north to south, the electromagnetic field of the coil 3B runs north to south, the electromagnetic field of the coil 3C flows from south to north, and the electromagnetic field of the coil 3D flows from south to north, as shown in Fig.11. It should be noted that the sets A, B, C and D can be formed by any combination of coil, magnet and electromagnet.

The south to north electromagnetic field induces current flow in the coil 3A. The north to south electromagnetic field induces current flow in the coil 3B. The north to south electromagnetic field induces current flow in the coil 3C and The north to south electromagnetic field induces current flow in the coil 3D. The induced current flow can have any power and it can be single-phase, two-phase or three-phase current.


Fig.12 shows the electrons being attracted and repelled by the induction coils 3 and 4. Being repelled and attracted by electromagnetic induction, the electric current flows without resistance.

The electron-trap produces electromagnetic waves which can be used for various purposes, including signal transmission at any frequency and for any purpose. The capture is caused by these electromagnetic waves. The same physical effect can be achieved by the combination of the capture devices of other technologies, including electromechanical, electric, electronic, electromagnetic, or through the combination of a magnet or any other magnetised materials.

The space free electron-trap of the present invention is a renewable source of electrical power production and a new way of generating energy through the capture effect, generating flows of electrons, generating ordered movement of electrons - electric current - as shown in Figures 9, 11, and 12. Electrons can move without any voltage difference in the continuous loop 5. Alternatively, the loop may be biased with any chosen voltage.
Revealed At Last...
Free Energy Magnetic Generator and synthesizes many other technologies imbued with Nikola Tesla's technological identity

✔ Nikola Tesla’s method of magnifying electric power by neutralizing the magnetic counter-forces in an electric generator

Generates Energy-On-Demand: 👉 Free Energy Will Change Our World Forever

✔ Combination of induction motor and alternator 
✔ Combine generators with induction motors - self-powered generators with rotary motion
✔ Various methods of generating high power immobile generators

✔ Or maybe called Overunity for the system. Mother Nature doesn't care about people calling or naming phenomena. Overunity/Free Energy, Zero Point Energy (ZPE) are just a few different words

Related: Bifilar Transformer - Zero-Back-EMF Coil: Alex in Russia

Related

Over-Unity 5664206183180221069

Post a Comment

emo-but-icon

Follow Us

Hot in week

Recent

Comments

item